A294523 Lexicographically earliest sequence of positive terms, such that, for any n > 0, the binary expansion of n, say of size k+1, is (1, a(n) mod 2, a^2(n) mod 2, ..., a^k(n) mod 2) (where a^i denotes the i-th iterate of the sequence).
1, 2, 1, 2, 6, 5, 1, 2, 10, 6, 14, 9, 5, 13, 1, 2, 18, 10, 22, 12, 6, 14, 30, 17, 9, 5, 11, 25, 13, 29, 1, 2, 34, 18, 38, 20, 10, 22, 46, 24, 12, 6, 54, 28, 14, 30, 62, 33, 17, 9, 19, 41, 5, 11, 23, 49, 25, 13, 27, 57, 29, 61, 1, 2, 66, 34, 70, 36, 18, 38, 78
Offset: 1
Examples
For n=11: - the binary representation of 11 is (1,0,1,1), - a(11) = 14 has parity 0, - a(14) = 13 has parity 1, - a(13) = 5 has parity 1, - we find the binary digits of 11 beyond the initial 1, in order: 0, 1, 1. See also representations of first terms in Links section.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8192
- Rémy Sigrist, Representation of the first 32 terms as an oriented graph (n -> a(n))
- Rémy Sigrist, Representation of the first 64 terms as an oriented graph (n -> a(n))
- Rémy Sigrist, PARI program for A294523
Crossrefs
Programs
-
PARI
See Links section.
Formula
a(n) = 1 iff n = A000225(k) for some k > 0.
a(n) = 2 iff n = A000079(k) for some k > 0.
a(n) = 5 iff n = A081254(k) for some k > 2.
a(n) = 6 iff n = A000975(k) for some k > 2.
a(n) = 10 iff n = A081253(k) for some k > 2.
a(n) = 12 iff n = A266613(k) for some k > 3.
a(n) = 13 iff n = A052997(k) for some k > 2.
a(n) = 14 iff n = A266721(k) for some k > 2.
a(n) = 18 iff n = A267045(k) for some k > 3.
a(n) = 54 iff n = A266248(k) for some k > 4.
These formulas come from the fact that each sequence on the right side, say f, eventually satisfies: f(n) = floor(f(n+1)/2), and f(n) and f(n+2) have the same parity.
Comments