cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294532 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3.

This page as a plain text file.
%I A294532 #6 Nov 03 2017 09:53:33
%S A294532 1,2,6,12,23,42,73,124,207,342,562,918,1495,2429,3941,6388,10348,
%T A294532 16756,27125,43903,71052,114980,186058,301065,487151,788245,1275426,
%U A294532 2063702,3339160,5402895,8742089,14145019,22887144,37032200,59919382,96951621,156871043
%N A294532 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3.
%C A294532 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values, which, for the sequences in the following guide, are a(0) = 1, a(1) = 2, b(0) = 3:
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2)                   A294532
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 1               A294533
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 2               A294534
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 3               A294535
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) - 1               A294536
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + n               A294537
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 2n              A294538
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1           A294539
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 2n - 1          A294540
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1)                   A294541
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 1               A294542
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 2               A294543
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 3               A294544
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) - 1               A294545
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + n               A294546
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 2n              A294547
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1           A294548
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1           A294549
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2)          A294550
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1      A294551
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n      A294552
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n      A294553
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2      A294554
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3      A294555
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1  A294556
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1  A294557
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2n     A294558
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2)        A294559
%C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2)      A294560
%C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2)        A294561
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1      A294562
%C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n      A294563
%C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1    A294564
%C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 3    A294565
%C A294532 Conjecture: for every sequence listed here,  a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
%H A294532 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
%e A294532 a(0) = 1, a(1) = 2, b(0) = 3, so that
%e A294532 b(1) = 4 (least "new number")
%e A294532 a(2)  = a(0) + a(1) + b(0) = 6
%e A294532 Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, ...)
%t A294532 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
%t A294532 a[0] = 1; a[1] = 3; b[0] = 2;
%t A294532 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2];
%t A294532 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
%t A294532 Table[a[n], {n, 0, 40}]  (* A294532 *)
%t A294532 Table[b[n], {n, 0, 10}]
%Y A294532 Cf. A001622, A293076, A294413.
%K A294532 nonn,easy
%O A294532 0,2
%A A294532 _Clark Kimberling_, Nov 03 2017