This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294532 #6 Nov 03 2017 09:53:33 %S A294532 1,2,6,12,23,42,73,124,207,342,562,918,1495,2429,3941,6388,10348, %T A294532 16756,27125,43903,71052,114980,186058,301065,487151,788245,1275426, %U A294532 2063702,3339160,5402895,8742089,14145019,22887144,37032200,59919382,96951621,156871043 %N A294532 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3. %C A294532 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values, which, for the sequences in the following guide, are a(0) = 1, a(1) = 2, b(0) = 3: %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) A294532 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 1 A294533 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 2 A294534 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 3 A294535 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) - 1 A294536 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + n A294537 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 2n A294538 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1 A294539 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-2) + 2n - 1 A294540 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) A294541 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 1 A294542 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 2 A294543 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 3 A294544 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) - 1 A294545 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + n A294546 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 2n A294547 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1 A294548 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1 A294549 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) A294550 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1 A294551 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n A294552 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n A294553 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2 A294554 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3 A294555 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1 A294556 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1 A294557 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2n A294558 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2) A294559 %C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2) A294560 %C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2) A294561 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1 A294562 %C A294532 a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n A294563 %C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1 A294564 %C A294532 a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 3 A294565 %C A294532 Conjecture: for every sequence listed here, a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). %H A294532 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294532 a(0) = 1, a(1) = 2, b(0) = 3, so that %e A294532 b(1) = 4 (least "new number") %e A294532 a(2) = a(0) + a(1) + b(0) = 6 %e A294532 Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, ...) %t A294532 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294532 a[0] = 1; a[1] = 3; b[0] = 2; %t A294532 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2]; %t A294532 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294532 Table[a[n], {n, 0, 40}] (* A294532 *) %t A294532 Table[b[n], {n, 0, 10}] %Y A294532 Cf. A001622, A293076, A294413. %K A294532 nonn,easy %O A294532 0,2 %A A294532 _Clark Kimberling_, Nov 03 2017