cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294536 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) - 1, where a(0) = 1, a(1) = 2, b(0) = 3.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 63, 107, 180, 298, 490, 801, 1305, 2121, 3442, 5580, 9040, 14640, 23701, 38363, 62087, 100474, 162586, 263086, 425699, 688813, 1114541, 1803384, 2917956, 4721372, 7639361, 12360767, 20000164, 32360968, 52361170, 84722177, 137083387
Offset: 0

Views

Author

Clark Kimberling, Nov 03 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2)  = a(1) + a(0) + b(0) - 1 = 5
Complement: (b(n)) = (3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
		

Crossrefs

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] - 1;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A294536 *)
    Table[b[n], {n, 0, 10}]