A294541 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 7, 14, 27, 49, 85, 144, 240, 396, 649, 1060, 1725, 2802, 4545, 7366, 11931, 19318, 31271, 50612, 81907, 132544, 214477, 347049, 561555, 908634, 1470220, 2378886, 3849139, 6228059, 10077233, 16305328, 26382598, 42687964, 69070601, 111758605
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number"); a(2) = a(1) + a(0) + b(1) = 7; Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, ...).
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294541 *) Table[b[n], {n, 0, 10}]
Comments