A294542 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 16, 31, 55, 96, 162, 270, 445, 729, 1189, 1934, 3141, 5094, 8255, 13370, 21647, 35040, 56711, 91776, 148513, 240316, 388857, 629202, 1018089, 1647322, 2665444, 4312800, 6978279, 11291115, 18269431, 29560584, 47830054, 77390678, 125220773
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number"); a(2) = a(1) + a(0) + b(1) + 1 = 8. Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...).
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294542 *) Table[b[n], {n, 0, 10}]
Comments