A294545 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 12, 24, 43, 75, 127, 212, 351, 576, 941, 1532, 2489, 4038, 6545, 10602, 17167, 27790, 44979, 72793, 117797, 190616, 308440, 499084, 807553, 1306667, 2114251, 3420950, 5535234, 8956218, 14491487, 23447741, 37939265, 61387044, 99326348
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number"); a(2) = a(1) + a(0) + b(1) -1 = 6. Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, ...).
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294545 *) Table[b[n], {n, 0, 10}]
Comments