A294546 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 9, 19, 38, 69, 121, 207, 347, 575, 945, 1545, 2517, 4091, 6639, 10763, 17438, 28239, 45717, 73998, 119759, 193803, 313610, 507463, 821125, 1328642, 2149823, 3478523, 5628406, 9106991, 14735461, 23842518, 38578047, 62420635, 100998755, 163419465
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number"); a(2) = a(1) + a(0) + b(1) + 2 = 9. Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...).
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294546 *) Table[b[n], {n, 0, 10}]
Comments