A294548 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 17, 34, 62, 110, 188, 316, 524, 862, 1410, 2298, 3736, 6065, 9834, 15934, 25805, 41778, 67624, 109445, 177114, 286606, 463769, 750426, 1214248, 1964729, 3179034, 5143822, 8322917, 13466803, 21789786, 35256657, 57046513, 92303242, 149349829
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number"); a(2) = a(1) + a(0) + b(1) + 1 = 8. Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 18, ...).
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + n - 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294548 *) Table[b[n], {n, 0, 10}]
Comments