A294550 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 10, 21, 42, 76, 133, 226, 379, 628, 1032, 1687, 2748, 4466, 7247, 11748, 19032, 30819, 49893, 80757, 130697, 211503, 342251, 553807, 896113, 1449977, 2346149, 3796187, 6142399, 9938651, 16081117, 26019837, 42101025, 68120935, 110222035, 178343047
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number"); a(2) = a(1) + a(0) + b(1) + b(0) = 10. Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...).
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294550 *) Table[b[n], {n, 0, 10}]
Comments