cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294551 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

This page as a plain text file.
%I A294551 #8 Nov 14 2017 22:20:07
%S A294551 1,2,11,23,46,83,145,246,411,680,1117,1825,2972,4829,7835,12700,20573,
%T A294551 33313,53928,87285,141260,228595,369907,598556,968519,1567133,2535712,
%U A294551 4102907,6638683,10741656,17380407,28122133,45502612,73624819,119127507,192752404
%N A294551 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
%C A294551 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
%H A294551 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
%e A294551 a(0) = 1, a(1) = 2, b(0) = 3, so that
%e A294551 b(1) = 4 (least "new number");
%e A294551 a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11.
%e A294551 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...).
%t A294551 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
%t A294551 a[0] = 1; a[1] = 3; b[0] = 2;
%t A294551 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 1;
%t A294551 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
%t A294551 Table[a[n], {n, 0, 40}]  (* A294551 *)
%t A294551 Table[b[n], {n, 0, 10}]
%Y A294551 Cf. A001622, A294532.
%K A294551 nonn,easy
%O A294551 0,2
%A A294551 _Clark Kimberling_, Nov 04 2017