cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294552 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 12, 26, 53, 97, 171, 292, 490, 812, 1336, 2186, 3563, 5793, 9403, 15246, 24702, 40004, 64765, 104831, 169661, 274560, 444292, 718927, 1163298, 1882307, 3045690, 4928085, 7973866, 12902045, 20876008, 33778153, 54654264, 88432523, 143086896, 231519531
Offset: 0

Views

Author

Clark Kimberling, Nov 04 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences, and a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
The sequence is also the solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 2n with initial values a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5.

Examples

			a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number");
a(2) = a(1) + a(0) + b(1) + b(0) + 2 = 12.
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, ...).
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + n;
    j = 1; While[j < 5, k = a[j] - j - 1;
     While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
    u = Table[a[n], {n, 0, k}]  (* A294552 *)
    Table[b[n], {n, 0, 20}] (* complement *)

Extensions

Edited by Clark Kimberling, Dec 21 2017