A294553 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 8, 16, 31, 55, 96, 163, 272, 449, 736, 1201, 1954, 3174, 5149, 8345, 13517, 21886, 35428, 57340, 92795, 150163, 242987, 393180, 636198, 1029410, 1665641, 2695086, 4360764, 7055888, 11416691, 18472619, 29889351, 48362012, 78251406, 126613462
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + b(1) + b(0) + b(1) - 2 = 8 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 2; b[0] = 3; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] - n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294553 *) Table[b[n], {n, 0, 10}]
Comments