A294555 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 13, 27, 54, 97, 169, 286, 477, 787, 1290, 2106, 3428, 5568, 9032, 14638, 23710, 38390, 62144, 100580, 162772, 263402, 426226, 689682, 1115965, 1805707, 2921734, 4727505, 7649305, 12376878, 20026253, 32403203, 52429530, 84832809, 137262417, 222095306
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + b(1) + b(0) + 3 = 13 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 3; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294555 *) Table[b[n], {n, 0, 10}]
Extensions
Definition corrected by Georg Fischer, Sep 27 2020
Comments