A294558 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 14, 31, 64, 118, 209, 358, 602, 999, 1644, 2690, 4386, 7133, 11580, 18778, 30427, 49278, 79782, 129141, 209008, 338238, 547339, 885674, 1433114, 2318893, 3752116, 6071122, 9823356, 15894601, 25718084, 41612816, 67331035, 108943990, 176275168, 285219305
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + b(1) + b(0) + 1 = 11 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + 2*n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A294558 *) Table[b[n], {n, 0, 10}]
Extensions
Definition corrected by Georg Fischer, Sep 27 2020
Comments