This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294559 #4 Nov 15 2017 17:38:28 %S A294559 1,2,13,28,57,104,183,312,523,866,1423,2327,3793,6166,10008,16226, %T A294559 26289,42573,68923,111560,180550,292180,472803,765059,1237941,2003083, %U A294559 3241112,5244286,8485492,13729875,22215467,35945445,58161018,94106572,152267702,246374389 %N A294559 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. %C A294559 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). %H A294559 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294559 a(0) = 1, a(1) = 2, b(0) = 3, so that %e A294559 b(1) = 4 (least "new number") %e A294559 a(2) = a(1) + a(0) + b(1) + 2*b(0) = 13 %e A294559 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, ...) %t A294559 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294559 a[0] = 1; a[1] = 3; b[0] = 2; %t A294559 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 2 b[n - 2]; %t A294559 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294559 Table[a[n], {n, 0, 40}] (* A294559 *) %t A294559 Table[b[n], {n, 0, 10}] %Y A294559 Cf. A001622, A294532. %K A294559 nonn,easy %O A294559 0,2 %A A294559 _Clark Kimberling_, Nov 15 2017