A294560 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 17, 37, 76, 139, 245, 418, 701, 1161, 1908, 3119, 5081, 8258, 13401, 21727, 35202, 57007, 92291, 149384, 241765, 391243, 633106, 1024451, 1657663, 2682224, 4340001, 7022343, 11362466, 18384935, 29747531, 48132600, 77880269, 126013011, 203893428
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(0) + a(1) + 2*b(0) + 2*b(1) = 17 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + 2 b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294560 *) Table[b[n], {n, 0, 10}]
Comments