A294561 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 14, 30, 61, 111, 195, 332, 556, 920, 1511, 2469, 4023, 6539, 10612, 17204, 27872, 45135, 73069, 118269, 191406, 309746, 501226, 811049, 1312355, 2123487, 3435928, 5559506, 8995529, 14555133, 23550763, 38106000, 61656870, 99762980, 161419963, 261183059
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + 2*b(1) + b(0) = 14 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] + b[n - 2]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294561 *) Table[b[n], {n, 0, 10}]
Comments