This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294562 #4 Nov 15 2017 17:38:48 %S A294562 1,2,5,10,17,29,48,80,130,212,344,558,904,1465,2371,3838,6211,10051, %T A294562 16264,26317,42583,68902,111487,180391,291881,472274,764157,1236433, %U A294562 2000592,3237027,5237621,8474650,13712273,22186925,35899200,58086127 %N A294562 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. %C A294562 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). %H A294562 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A294562 a(0) = 1, a(1) = 2, b(0) = 3, so that %e A294562 b(1) = 4 (least "new number") %e A294562 a(2) = a(1) + a(0) + b(1) - b(0) + 1 = 5 %e A294562 Complement: (b(n)) = (3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, ...) %t A294562 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294562 a[0] = 1; a[1] = 3; b[0] = 2; %t A294562 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + 1; %t A294562 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294562 Table[a[n], {n, 0, 40}] (* A294562 *) %t A294562 Table[b[n], {n, 0, 10}] %Y A294562 Cf. A001622, A294532. %K A294562 nonn,easy %O A294562 0,2 %A A294562 _Clark Kimberling_, Nov 15 2017