A294563 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 12, 24, 42, 73, 123, 205, 339, 555, 906, 1474, 2394, 3883, 6293, 10193, 16504, 26716, 43240, 69978, 113240, 183241, 296505, 479771, 776302, 1256100, 2032430, 3288559, 5321019, 8609609, 13930660, 22540302, 36470996, 59011333, 95482365
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + b(1) - b(0) + 2 = 6 Complement: (b(n)) = (3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - b[n - 2] + n; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294563 *) Table[b[n], {n, 0, 10}]
Comments