A294565 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 2, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 6, 12, 25, 44, 77, 130, 217, 360, 590, 964, 1569, 2549, 4135, 6702, 10856, 17578, 28455, 46055, 74533, 120614, 195173, 315814, 511015, 826858, 1337903, 2164792, 3502727, 5667552, 9170313, 14837900, 24008249, 38846186, 62854473, 101700698, 164555211
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, so that b(1) = 4 (least "new number") a(2) = a(1) + a(0) + 2*b(1) - b(0) - 2 = 6 Complement: (b(n)) = (3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + 2 b[n - 1] - b[n - 2] - 2; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A294565 *) Table[b[n], {n, 0, 10}]
Comments