cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294567 a(n) = Sum_{d|n} d^(1 + 2*n/d).

This page as a plain text file.
%I A294567 #34 Oct 04 2023 03:53:11
%S A294567 1,9,28,97,126,588,344,2049,2917,6174,1332,53764,2198,52320,258648,
%T A294567 430081,4914,2463429,6860,8352582,15181712,8560308,12168,242240964,
%U A294567 48843751,134606598,1167064120,1651526120,24390,14202123408,29792,25905102849,94162701936
%N A294567 a(n) = Sum_{d|n} d^(1 + 2*n/d).
%C A294567 If p is prime, a(p) = 1 + p^3. - _Robert Israel_, Nov 03 2017
%H A294567 Seiichi Manyama, <a href="/A294567/b294567.txt">Table of n, a(n) for n = 1..3143</a>
%F A294567 L.g.f.: -log(Product_{k>=1} (1 - k^2*x^k)) = Sum_{n>=1} a(n)*x^n/n. - _Ilya Gutkovskiy_, Mar 12 2018
%F A294567 G.f.: Sum_{k>0} k^3 * x^k / (1 - k^2 * x^k). - _Seiichi Manyama_, Jan 14 2023
%p A294567 f:= n -> add(d^(1+2*n/d),d=numtheory:-divisors(n)):
%p A294567 map(f, [$1..100]); # _Robert Israel_, Nov 03 2017
%t A294567 sd[n_] := Module[{d = Divisors[n]}, Total[d^(1 + (2 n)/d)]]; Array[sd,40] (* _Harvey P. Dale_, Mar 17 2020 *)
%t A294567 a[n_] := DivisorSum[n, #^(1 + 2*n/#) &]; Array[a, 33] (* _Amiram Eldar_, Oct 04 2023 *)
%o A294567 (PARI) a(n) = sumdiv(n, d, d^(1+2*n/d)); \\ _Michel Marcus_, Nov 02 2017
%o A294567 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^3*x^k/(1-k^2*x^k))) \\ _Seiichi Manyama_, Jan 14 2023
%Y A294567 Column k=2 of A294579.
%Y A294567 Cf. A292164.
%K A294567 nonn
%O A294567 1,2
%A A294567 _Seiichi Manyama_, Nov 02 2017