cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294598 Expansion of 1/(Sum_{i>=0} q^(i^2)/Product_{j=1..i} (1 - q^j + q^(2*j))).

This page as a plain text file.
%I A294598 #6 Feb 16 2025 08:33:51
%S A294598 1,-1,0,1,-1,0,0,0,1,-2,2,0,-3,4,-3,1,1,-4,9,-10,2,11,-19,16,-7,-5,22,
%T A294598 -40,43,-13,-42,86,-87,44,24,-106,183,-195,74,163,-382,430,-256,-86,
%U A294598 504,-859,907,-395,-639,1697,-2084,1399,236,-2313,4037,-4301,2080,2529,-7561,9923,-7327
%N A294598 Expansion of 1/(Sum_{i>=0} q^(i^2)/Product_{j=1..i} (1 - q^j + q^(2*j))).
%C A294598 Convolution inverse of the 3rd order mock theta function chi(q) (A053252).
%H A294598 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function</a>
%F A294598 G.f.: 1/(Sum_{i>=0} q^(i^2)/Product_{j=1..i} (1 - q^j + q^(2*j))).
%t A294598 nmax = 60; CoefficientList[Series[1/Sum[q^(i^2)/Product[1 - q^j + q^(2 j), {j, 1, i}], {i, 0, nmax}], {q, 0, nmax}], q]
%Y A294598 Cf. A053252, A294407, A294408, A294599, A294600.
%K A294598 sign
%O A294598 0,10
%A A294598 _Ilya Gutkovskiy_, Nov 03 2017