This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294599 #10 Feb 16 2025 08:33:51 %S A294599 1,-2,1,0,-1,2,-1,-2,5,-4,-2,10,-13,4,16,-32,24,14,-62,76,-17,-100, %T A294599 185,-126,-108,382,-426,36,655,-1098,650,798,-2352,2402,115,-4186, %U A294599 6441,-3234,-5612,14296,-13307,-2750,26556,-37524,15220,38448,-86366,72836,28545,-166734,216788,-65702,-257380 %N A294599 Expansion of 1/(Sum_{i>=0} q^(2*i*(i+1))/Product_{j=0..i} (1 - q^(2*j+1))^2). %C A294599 Convolution inverse of the 3rd-order mock theta function omega(q) (A053253). %H A294599 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function</a> %F A294599 G.f.: 1/(Sum_{i>=0} q^(2*i*(i+1))/Product_{j=0..i} (1 - q^(2*j+1))^2). %F A294599 G.f.: 1/(Sum_{i>=0} q^i/Product_{j=0..i} (1 - q^(2*j+1))). %t A294599 nmax = 52; CoefficientList[Series[1/Sum[q^(2 i (i + 1))/Product[(1 - q^(2 j + 1))^2, {j, 0, i}], {i, 0, nmax}], {q, 0, nmax}], q] %t A294599 nmax = 52; CoefficientList[Series[1/Sum[q^i/Product[1 - q^(2 j + 1), {j, 0, i}], {i, 0, nmax}], {q, 0, nmax}], q] %Y A294599 Cf. A053253, A294407, A294408, A294598, A294600. %K A294599 sign %O A294599 0,2 %A A294599 _Ilya Gutkovskiy_, Nov 03 2017