This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294600 #6 Feb 16 2025 08:33:51 %S A294600 1,1,1,0,-1,-1,-1,1,2,2,1,-2,-4,-5,-2,4,9,11,4,-8,-20,-22,-7,18,42,43, %T A294600 12,-42,-89,-87,-19,96,189,179,28,-214,-399,-363,-32,472,838,727,6, %U A294600 -1041,-1760,-1452,112,2291,3696,2895,-487,-5015,-7735,-5740,1551,10929,16135,11298,-4377,-23741,-33587 %N A294600 Expansion of 1/(Sum_{i>=0} q^(2*i*(i+1))/Product_{j=0..i} (1 + q^(2*j+1) + q^(4*j+2))). %C A294600 Convolution inverse of the 3rd order mock theta function rho(q) (A053255). %H A294600 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MockThetaFunction.html">Mock Theta Function</a> %F A294600 G.f.: 1/(Sum_{i>=0} q^(2*i*(i+1))/Product_{j=0..i} (1 + q^(2*j+1) + q^(4*j+2))). %t A294600 nmax = 60; CoefficientList[Series[1/Sum[q^(2 i (i + 1))/Product[1 + q^(2 j + 1) + q^(4 j + 2), {j, 0, i}], {i, 0, nmax}], {q, 0, nmax}], q] %Y A294600 Cf. A053255, A294407, A294408, A294598, A294599. %K A294600 sign %O A294600 0,9 %A A294600 _Ilya Gutkovskiy_, Nov 03 2017