This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294602 #24 Sep 08 2022 08:46:20 %S A294602 0,0,1,1,1,1,1,2,2,1,1,2,2,2,2,2,2,3,3,4,4,3,3,4,4,3,3,3,3,4,4,5,5,4, %T A294602 4,4,4,4,4,4,4,5,5,6,6,5,5,6,6,6,6,6,6,7,7,7,7,6,6,7,7,7,7,7,7,7,7,8, %U A294602 8,8,8,9,9,9,9,9,9,9,9,10,10,9,9,10,10,9 %N A294602 a(n) = pi(n-1) - pi(floor(n/2)), where pi is A000720. %C A294602 Number of primes in the interval (n/2, n). %C A294602 Number of primes among the larger parts of the partitions of n into two distinct parts. For n=8, the partitions of 8 into two distinct parts are (7,1), (6,2), (5,3); 7 and 5 are prime so a(8) = 2. - _Wesley Ivan Hurt_, Apr 07 2018 %F A294602 a(n) = A056171(n) - A010051(n). %F A294602 a(n) = Sum_{i=1..floor((n-1)/2)} A010051(n-i). - _Wesley Ivan Hurt_, Apr 07 2018 %e A294602 a(8) = 2 because there are 2 primes between 4 and 8: 5, 7. %e A294602 a(19) = 3 because there are 3 primes between 9 and 19: 11, 13, 17. %p A294602 A294602 := proc(n) %p A294602 numtheory[pi](n-1)-numtheory[pi](floor(n/2)) ; %p A294602 end proc: %p A294602 seq(A294602(n),n=1..120) ; # _R. J. Mathar_, Dec 17 2017 %t A294602 Array[PrimePi[# - 1] - PrimePi[Floor[#/2]] &, 86] (* _Michael De Vlieger_, Nov 03 2017 *) %o A294602 (Magma) [0, 0] cat [#PrimesInInterval(Floor(n/2)+1, n-1): n in [3..86]]; %o A294602 (PARI) vector(86, n, primepi(n-1)-primepi(n\2)) %Y A294602 Cf. A000720, A001221, A010051, A056171. %K A294602 nonn,easy %O A294602 1,8 %A A294602 _Arkadiusz Wesolowski_, Nov 03 2017