This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294603 #14 Mar 19 2022 06:37:22 %S A294603 1,1,3,20,231,3864,85360,2353546,77963599,3019479344,133966276692, %T A294603 6702399275538,373406941221160,22930441709648290,1539004344848618466, %U A294603 112089683771614695478,8805334896381292460191,742162775145283382779168,66809386370870410069346476 %N A294603 Number of words of semilength n over n-ary alphabet, either empty or beginning with the first letter of the alphabet, such that the index set of occurring letters is an integer interval [1, k], that can be built by repeatedly inserting doublets into the initially empty word. %H A294603 Alois P. Heinz, <a href="/A294603/b294603.txt">Table of n, a(n) for n = 0..350</a> %F A294603 a(n) = Sum_{k=0..n} A256116(n,k). %e A294603 a(0) = 1: the empty word. %e A294603 a(1) = 1: aa. %e A294603 a(2) = 3: aaaa, aabb, abba. %e A294603 a(3) = 20: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, aabbcc, aabccb, aacbbc, aaccbb, abaaba, abbaaa, abbabb, abbacc, abbbba, abbcca, abccba, acbbca, accabb, accbba. %p A294603 A:= proc(n, k) option remember; `if`(n=0, 1, k/n* %p A294603 add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1)) %p A294603 end: %p A294603 T:= proc(n, k) option remember; %p A294603 add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/`if`(k=0, 1, k) %p A294603 end: %p A294603 a:= n-> add(T(n, k), k=0..n): %p A294603 seq(a(n), n=0..20); %t A294603 A[n_, k_] := A[n, k] = If[n == 0, 1, k/n* %t A294603 Sum[Binomial[2*n, j]*(n-j) *If[j == 0, 1, (k - 1)^j], {j, 0, n - 1}]]; %t A294603 T[n_, k_] := T[n, k] = %t A294603 Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k == 0, 1, k]; %t A294603 a[n_] := Sum[T[n, k], {k, 0, n}]; %t A294603 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Mar 19 2022, after _Alois P. Heinz_ *) %Y A294603 Row sums of A256116. %Y A294603 Cf. A258498. %K A294603 nonn %O A294603 0,3 %A A294603 _Alois P. Heinz_, Nov 03 2017