cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294606 Expansion of Product_{k>=1} (1 - k*x^k)^(k^k).

This page as a plain text file.
%I A294606 #12 Nov 07 2017 11:09:31
%S A294606 1,-1,-8,-73,-919,-13977,-253640,-5290184,-124681406,-3272865905,
%T A294606 -94671665085,-2991846831531,-102566663464544,-3791541404744714,
%U A294606 -150357943095635464,-6367699625807475503,-286854179220742344135,-13697182490105378305606
%N A294606 Expansion of Product_{k>=1} (1 - k*x^k)^(k^k).
%H A294606 Seiichi Manyama, <a href="/A294606/b294606.txt">Table of n, a(n) for n = 0..385</a>
%F A294606 a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294608(k) * a(n-k) for n > 0.
%t A294606 nmax = 20; CoefficientList[Series[Product[(1 - k*x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 05 2017 *)
%o A294606 (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k^k))
%Y A294606 Column k=1 of A294605.
%Y A294606 Cf. A294608.
%K A294606 sign
%O A294606 0,3
%A A294606 _Seiichi Manyama_, Nov 04 2017