cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294607 Expansion of Product_{k>=1} (1 - k*x^k)^(k^(2*k)).

This page as a plain text file.
%I A294607 #13 Nov 07 2017 11:08:43
%S A294607 1,-1,-32,-2155,-259477,-48496477,-13001163543,-4732376829091,
%T A294607 -2246495500625034,-1348407234549297356,-998562296547665810106,
%U A294607 -894380299878766527522232,-953030926136814034550634393,-1191548000252369142490485950437
%N A294607 Expansion of Product_{k>=1} (1 - k*x^k)^(k^(2*k)).
%H A294607 Seiichi Manyama, <a href="/A294607/b294607.txt">Table of n, a(n) for n = 0..213</a>
%t A294607 nmax = 20; CoefficientList[Series[Product[(1 - k*x^k)^(k^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 05 2017 *)
%o A294607 (PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k^(2*k)))
%Y A294607 Column k=2 of A294605.
%K A294607 sign
%O A294607 0,3
%A A294607 _Seiichi Manyama_, Nov 04 2017