cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294610 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^k).

This page as a plain text file.
%I A294610 #13 Nov 07 2017 11:08:57
%S A294610 1,1,9,90,1154,17427,309117,6285102,144603015,3717580810,105696353842,
%T A294610 3293810230381,111651093529948,4089889271054734,160989247361249558,
%U A294610 6776381334102511286,303712681809603918633,14439887378431671417669
%N A294610 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^k).
%H A294610 Seiichi Manyama, <a href="/A294610/b294610.txt">Table of n, a(n) for n = 0..385</a>
%F A294610 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A294608(k) * a(n-k) for n > 0.
%t A294610 nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 05 2017 *)
%o A294610 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k*x^k)^k^k))
%Y A294610 Column k=1 of A294609.
%Y A294610 Cf. A294606, A294608.
%K A294610 nonn
%O A294610 0,3
%A A294610 _Seiichi Manyama_, Nov 04 2017