cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294611 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^(2*k)).

This page as a plain text file.
%I A294611 #19 Nov 07 2017 18:28:26
%S A294611 1,1,33,2220,264908,49163017,13120646934,4762819155533,
%T A294611 2257121941722156,1353302171994081060,1001440370811165212942,
%U A294611 896481721940248699989226,954894511643935287905899347,1193519554843091905978411389666
%N A294611 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^(2*k)).
%H A294611 Seiichi Manyama, <a href="/A294611/b294611.txt">Table of n, a(n) for n = 0..214</a>
%F A294611 Convolution inverse of A294607.
%t A294611 nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^(k^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 05 2017 *)
%o A294611 (PARI) N=20; x='x+O('x^N); Vec(1/prod(k=1, N, (1-k*x^k)^k^(2*k)))
%Y A294611 Column k=2 of A294609.
%Y A294611 Cf. A294607.
%K A294611 nonn
%O A294611 0,3
%A A294611 _Seiichi Manyama_, Nov 04 2017