This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294621 #7 Feb 16 2025 08:33:51 %S A294621 1,1,1,1,2,2,2,3,4,4,4,5,6,7,8,9,10,11,13,14,16,18,20,21,23,26,29,32, %T A294621 35,38,41,45,49,53,59,64,69,73,80,87,94,101,109,117,125,134,145,156, %U A294621 167,178,190,202,217,232,249,265,282,299,318,339,361,384,408,432,457,484,514,545,578,610,646 %N A294621 Number of partitions of n into generalized heptagonal numbers (A085787). %H A294621 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Number</a> %H A294621 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %H A294621 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A294621 G.f.: Product_{k>=1} 1/((1 - x^(k*(5*k-3)/2))*(1 - x^(k*(5*k+3)/2))). %e A294621 a(8) = 4 because we have [7, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1]. %t A294621 nmax = 70; CoefficientList[Series[Product[1/((1 - x^(k (5 k - 3)/2)) (1 - x^(k (5 k + 3)/2))), {k, 1, nmax}], {x, 0, nmax}], x] %Y A294621 Cf. A007294, A085787, A095699, A279012, A294622, A294623. %K A294621 nonn %O A294621 0,5 %A A294621 _Ilya Gutkovskiy_, Nov 05 2017