This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294623 #6 Feb 16 2025 08:33:51 %S A294623 1,1,0,0,1,1,0,1,1,0,0,1,1,1,1,0,0,1,2,1,1,1,1,1,1,2,1,1,1,1,1,2,2,0, %T A294623 2,3,1,0,3,3,1,2,2,1,1,3,3,3,2,1,2,3,4,3,2,2,3,3,3,5,3,1,3,4,3,4,5,2, %U A294623 3,5,4,3,4,5,4,4,3,5,5,3,5,7,5,3,6,6,6,6,5,5,6,6,5,8,7,5,5,6,7,8,8 %N A294623 Number of partitions of n into distinct generalized heptagonal numbers (A085787). %H A294623 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeptagonalNumber.html">Heptagonal Number</a> %H A294623 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %H A294623 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A294623 G.f.: Product_{k>=1} (1 + x^(k*(5*k-3)/2))*(1 + x^(k*(5*k+3)/2)). %e A294623 a(18) = 2 because we have [18] and [13, 4, 1]. %t A294623 nmax = 100; CoefficientList[Series[Product[(1 + x^(k (5 k - 3)/2)) (1 + x^(k (5 k + 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A294623 Cf. A024940, A085787, A279280, A290942, A294621, A294624. %K A294623 nonn %O A294623 0,19 %A A294623 _Ilya Gutkovskiy_, Nov 05 2017