cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294629 Partial sums of A294628.

This page as a plain text file.
%I A294629 #56 Oct 23 2023 02:00:25
%S A294629 4,16,28,56,68,120,132,192,228,296,308,440,452,536,612,736,748,920,
%T A294629 932,1112,1204,1320,1332,1624,1676,1808,1916,2144,2156,2496,2508,2760,
%U A294629 2884,3048,3156,3600,3612,3792,3932,4336,4348,4784,4796,5120,5388,5600,5612,6224,6292,6640,6812,7184,7196,7728,7868,8384
%N A294629 Partial sums of A294628.
%C A294629 a(n) is also the volume (and the number of cubes) in the n-th level (starting from the top) of the stepped pyramid described in A294630.
%C A294629 Number of terms less than 10^k, k=1,2,3,...: 1, 5, 19, 61, 195, 623, 1967, 6225, ... - _Muniru A Asiru_, Mar 04 2018
%H A294629 Iain Fox, <a href="/A294629/b294629.txt">Table of n, a(n) for n = 1..10000</a>
%F A294629 a(n) = 4*A294016(n).
%F A294629 a(n) = A016742(n) - 8*A004125(n).
%F A294629 a(n) = A016742(n) - 4*A067436(n).
%F A294629 a(n) = A243980(n) - 4*A004125(n).
%F A294629 a(n) = A243980(n) - 2*A067436(n).
%e A294629 Illustration of initial terms (n = 1..6):
%e A294629 .                                                  _ _ _ _ _ _
%e A294629 .                                _ _ _ _         _|     |     |_
%e A294629 .                _ _ _ _       _|   |   |_      |       |       |
%e A294629 .      _ _      |   |   |     |    _|_    |     |      _|_      |
%e A294629 .     |_|_|     |_ _|_ _|     |_ _|   |_ _|     |_ _ _|   |_ _ _|
%e A294629 .     |_|_|     |   |   |     |   |_ _|   |     |     |_ _|     |
%e A294629 .               |_ _|_ _|     |_    |    _|     |       |       |
%e A294629 .       4                       |_ _|_ _|       |_      |      _|
%e A294629 .                  16                             |_ _ _|_ _ _|
%e A294629 .                                  28
%e A294629 .                                                      56
%e A294629 .
%e A294629 .                                        _ _ _ _ _ _ _ _
%e A294629 .             _ _ _ _ _ _              _|       |       |_
%e A294629 .            |     |     |           _|         |         |_
%e A294629 .         _ _|     |     |_ _       |           |           |
%e A294629 .        |      _ _|_ _      |      |          _|_          |
%e A294629 .        |     |       |     |      |        _|   |_        |
%e A294629 .        |_ _ _|       |_ _ _|      |_ _ _ _|       |_ _ _ _|
%e A294629 .        |     |       |     |      |       |_     _|       |
%e A294629 .        |     |_ _ _ _|     |      |         |_ _|         |
%e A294629 .        |_ _      |      _ _|      |           |           |
%e A294629 .            |     |     |          |_          |          _|
%e A294629 .            |_ _ _|_ _ _|            |_        |        _|
%e A294629 .                                       |_ _ _ _|_ _ _ _|
%e A294629 .                 68
%e A294629 .                                              120
%e A294629 .
%e A294629 Note that for n >= 2 the structure has a hole (or hollow) in the center.
%e A294629 a(n) is the number of ON cells in the n-th diagram.
%p A294629 with(numtheory): seq(sum(8*(sigma(k)-k+(1/2)),k=1..n),n=1..1000); # _Muniru A Asiru_, Mar 04 2018
%t A294629 f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@Array[f, 56] (* _Robert G. Wilson v_, Dec 12 2017 *)
%o A294629 (PARI) a(n) = 4*(sum(k=1, n, n\k*k) - sum(k=2, n, n%k)) \\ _Iain Fox_, Dec 10 2017
%o A294629 (PARI) first(n) = my(res = vector(n)); res[1] = 4; for(x=2, n, res[x] = res[x-1] + 8*(sigma(x) - x + (1/2))); res; \\ _Iain Fox_, Dec 10 2017
%o A294629 (GAP) List([1..1000],n->Sum([1..n],k->8*(Sigma(k)-k+(1/2)))); # _Muniru A Asiru_, Mar 04 2018
%o A294629 (Python)
%o A294629 from math import isqrt
%o A294629 def A294629(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))-n**2<<2 # _Chai Wah Wu_, Oct 22 2023
%Y A294629 For other related diagrams see A294630 (partial sums), A294016 and A237593.
%Y A294629 Cf. A000203, A004125, A016742, A024916, A067436, A239050, A243980, A294015, A294017, A294628.
%K A294629 nonn
%O A294629 1,1
%A A294629 _Omar E. Pol_, Nov 05 2017