A294656 Size of the orbit of n under iteration of the map A125256: x -> smallest odd prime divisor of n^2+1.
3, 3, 4, 2, 4, 3, 3, 6, 5, 7, 3, 2, 4, 4, 4, 3, 3, 6, 5, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 5, 5, 5, 3, 3, 3, 4, 5, 3, 3, 4, 6, 5, 3, 3, 4, 4, 4, 3, 3, 6, 3, 6, 3, 3, 4, 4, 4, 3, 3, 7, 3, 5, 3, 3, 4, 5, 4, 3, 3, 6, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 8, 6, 3
Offset: 2
Keywords
Examples
For n = 1 the map A125256 is not defined. a(2) = 3 = # { 2, 5, 13 }, because under A125256, 2 -> 2^2+1 = 5 (= its smallest odd prime factor), 5 -> least odd prime factor(5^2+1 = 26) = 13, 13 -> least odd prime factor(13^2 + 1 = 170 = 2*5*17) = 5, etc. a(3) = 3 = # { 3, 5, 13 }, because under A125256, 3 -> smallest odd prime factor(3^2+1 = 10) = 5, 5 -> 13, 13 -> 5 etc. a(4) = 4 = # { 4, 17, 5, 13 }, because under A125256, 4 -> 4^2+1 = 17 (= its smallest odd prime factor), 17 -> smallest odd prime factor(17^2+1 = 290 = 2*5*29) = 5, 5 -> 13, 13 -> 5 etc.
Links
- Ray Chandler, Table of n, a(n) for n = 2..20001
Crossrefs
Programs
Formula
a(n) = A294658(n) + 2.
Comments