A125256 Smallest odd prime divisor of n^2 + 1.
5, 5, 17, 13, 37, 5, 5, 41, 101, 61, 5, 5, 197, 113, 257, 5, 5, 181, 401, 13, 5, 5, 577, 313, 677, 5, 5, 421, 17, 13, 5, 5, 13, 613, 1297, 5, 5, 761, 1601, 29, 5, 5, 13, 1013, 29, 5, 5, 1201, 41, 1301, 5, 5, 2917, 17, 3137, 5, 5, 1741, 13, 1861, 5, 5, 17, 2113, 4357, 5, 5
Offset: 2
Examples
The prime divisors of 8^2 + 1 = 65 are 5 and 13, so a(7) = 5.
References
- D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.
Links
- Ray Chandler, Table of n, a(n) for n = 2..20001 (first 999 terms from Nick Hobson)
Crossrefs
Programs
-
Maple
with(numtheory, factorset); A125256 := proc(n) local t1,t2; if n <= 1 then return(-1); fi; if (n mod 5) = 2 or (n mod 5) = 3 then return(5); fi; t1 := numtheory[factorset](n^2+1); t2:=sort(convert(t1,list)); if (n mod 2) = 1 then return(t2[2]); fi; t2[1]; end; [seq(A125256(n),n=1..40)]; # N. J. A. Sloane, Nov 04 2017
-
Mathematica
Table[Select[First/@FactorInteger[n^2+1],OddQ][[1]],{n,2,68}] (* James C. McMahon, Dec 16 2024 *)
-
PARI
vector(68, n, if(n<2, "-", factor(n^2+1)[1+(n%2),1]))
-
PARI
A125256(n)=factor(n^2+1)[1+bittest(n,0),1] \\ M. F. Hasler, Nov 06 2017
Comments