cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294661 Numbers whose square contains all of the digits 1 through 9.

Original entry on oeis.org

11826, 12363, 12543, 14676, 15681, 15963, 18072, 19023, 19377, 19569, 19629, 20316, 22887, 23019, 23178, 23439, 24237, 24276, 24441, 24807, 25059, 25572, 25941, 26409, 26733, 27129, 27273, 29034, 29106, 30384, 32043, 32286, 33144, 34273, 35172, 35337, 35713, 35756, 35757, 35772, 35846, 35853
Offset: 1

Views

Author

M. F. Hasler, Nov 08 2017

Keywords

Comments

The sequence has asymptotic density 1: it contains "almost all" numbers.

Examples

			11826^2 = 139854276 contains all digits from 1 to 9 exactly once.
The same is true for all terms up to 30384 whose square is 923187456. These terms are also listed in A071519, they form a subsequence of A054037.
The next 3 terms, 32043 (32043^2 = 1026753849), 32286 (32286^2 = 1042385796) and 33144 (33144^2 = 1098524736) contain all of the digits '0' through '9' exactly once: They are the first terms of A054038.
The next term, 34273 with 34273^2 = 1174638529, does not have this property, but the next two are again of that type (35172^2 = 1237069584 and 35337^2 = 1248703569).
		

Crossrefs

Cf. A054037, A071519 (finite subsequence of the first 30 terms), A054038.

Programs

  • Mathematica
    Select[Range[#, # + 3*10^4] &@ 11111, AllTrue[Most@ DigitCount[#^2], # > 0 &] &] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    is_A294661(n)=#select(t->t,Set(digits(n^2)))>8
    N=100;for(k=10^4,oo,is_A294661(k)||next;print1(k",");N--||break)