A294661 Numbers whose square contains all of the digits 1 through 9.
11826, 12363, 12543, 14676, 15681, 15963, 18072, 19023, 19377, 19569, 19629, 20316, 22887, 23019, 23178, 23439, 24237, 24276, 24441, 24807, 25059, 25572, 25941, 26409, 26733, 27129, 27273, 29034, 29106, 30384, 32043, 32286, 33144, 34273, 35172, 35337, 35713, 35756, 35757, 35772, 35846, 35853
Offset: 1
Examples
11826^2 = 139854276 contains all digits from 1 to 9 exactly once. The same is true for all terms up to 30384 whose square is 923187456. These terms are also listed in A071519, they form a subsequence of A054037. The next 3 terms, 32043 (32043^2 = 1026753849), 32286 (32286^2 = 1042385796) and 33144 (33144^2 = 1098524736) contain all of the digits '0' through '9' exactly once: They are the first terms of A054038. The next term, 34273 with 34273^2 = 1174638529, does not have this property, but the next two are again of that type (35172^2 = 1237069584 and 35337^2 = 1248703569).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[#, # + 3*10^4] &@ 11111, AllTrue[Most@ DigitCount[#^2], # > 0 &] &] (* Michael De Vlieger, Nov 08 2017 *)
-
PARI
is_A294661(n)=#select(t->t,Set(digits(n^2)))>8 N=100;for(k=10^4,oo,is_A294661(k)||next;print1(k",");N--||break)
Comments