This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294668 #7 Nov 07 2017 04:22:33 %S A294668 1,2,3,11,19,42,93,170,352,658,1266,2351,4316,7926,14146,25458,44748, %T A294668 78687,136747,235988,405139,689108,1168260,1963940,3289950,5474700, %U A294668 9070976,14954802,24537752,40099905,65225553,105713691,170600344,274367688,439568770,701867457 %N A294668 Expansion of Product_{k>=1} 1/(1 - x^(2*k-1))^(k*(3*k+1)/2). %H A294668 Vaclav Kotesovec, <a href="/A294668/b294668.txt">Table of n, a(n) for n = 0..5000</a> %F A294668 a(n) ~ exp(2*Pi * n^(3/4) / (3*5^(1/4)) + 2*Zeta(3) * sqrt(5*n) / Pi^2 + 5^(1/4)*(5*Pi/48 - 20*Zeta(3)^2 / Pi^5) * n^(1/4) + 800 * Zeta(3)^3 / (3*Pi^8) - 73*Zeta(3) / (96*Pi^2) - 1/12) * A / (2^(115/48) * 5^(5/48) * Pi^(1/12) * n^(29/48)), where A is the Glaisher-Kinkelin constant A074962. %t A294668 nmax = 50; CoefficientList[Series[Product[1/(1 - x^(2*k-1))^(k*(3*k+1)/2), {k, 1, nmax}], {x, 0, nmax}], x] %Y A294668 Cf. A035528, A262811, A294591, A294667, A294669. %K A294668 nonn %O A294668 0,2 %A A294668 _Vaclav Kotesovec_, Nov 06 2017