cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294676 Ramsey-Comer numbers: a(n) is the smallest prime p congruent to 1 mod 2n such that for every prime q >= p (also congruent to 1 mod 2n), the multiplicative subgroup H of (Z/qZ)* of index n contains a solution to x+y = z.

Original entry on oeis.org

3, 13, 19, 73, 131, 313, 547, 193, 613, 1201, 1453, 1249, 547, 2857, 2971, 1601, 4217, 3169, 2243, 4441, 9661, 10957, 7039, 7873, 8951, 11701, 14419, 18257, 11311, 29641
Offset: 1

Views

Author

Jeremy F. Alm, Nov 06 2017

Keywords

Comments

a(n) <= n^4 + 5 (cf. Alm, 2017).
The subgroup H, along with its n-1 cosets, induces a cyclic coloring on K_q. Labeling the vertices 0 through q-1, color the edge uv by the color corresponding to the coset containing u-v (mod q). Thus if q >= a(n), the coloring induced by H and its cosets must contain a monochromatic triangle. In fact, it contains many monochromatic triangles in each color class.
The data gathered thus far suggest that the bound n^4 + 5 can be replaced by cn^3 for some c > 1, but there is no proof.
a(n) > A263308(n). The reason A263308(8) is zero can be taken to be that a(8) is exceptionally small; similarly, a(13) is small, so A263308(13)=0.

Crossrefs

Cf. A263308.