A294676 Ramsey-Comer numbers: a(n) is the smallest prime p congruent to 1 mod 2n such that for every prime q >= p (also congruent to 1 mod 2n), the multiplicative subgroup H of (Z/qZ)* of index n contains a solution to x+y = z.
3, 13, 19, 73, 131, 313, 547, 193, 613, 1201, 1453, 1249, 547, 2857, 2971, 1601, 4217, 3169, 2243, 4441, 9661, 10957, 7039, 7873, 8951, 11701, 14419, 18257, 11311, 29641
Offset: 1
Links
- Jeremy F. Alm, 401 and beyond: improved bounds and algorithms for the Ramsey algebra search, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.4. (Also here: arXiv:1609.01817 [math.NT], 2016.)
Crossrefs
Cf. A263308.
Comments