This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294684 #56 Oct 05 2024 16:31:02 %S A294684 0,1,5,2,12,62,4,38,350,4154,6,106,2190,52486,1342206,12,360,14622, %T A294684 699598,35792566,1908897150,18,1180,99878,9587578,981706830, %U A294684 104715443850,11488774559742,34,4148,699250,134223974,27487816990,5864063066498,1286742755471398,288230376353050814 %N A294684 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly two colors under translational symmetry, 1 <= k <= n. %C A294684 Colors are not being permuted, i.e., Power Group Enumeration does not apply here. %D A294684 F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973. %H A294684 Andrew Howroyd, <a href="/A294684/b294684.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %H A294684 Marko Riedel et al., <a href="https://math.stackexchange.com/questions/2506511/">Burnside lemma and translational symmetries of the torus</a>. %H A294684 Marko Riedel, <a href="/A294684/a294684.maple.txt">Maple code for sequences A294684, A294685, A294686, A294687</a>. %F A294684 T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=2 and S(n,k) Stirling numbers of the second kind. %F A294684 T(n,k) = A184271(n,k) - 2. - _Andrew Howroyd_, Oct 05 2024 %e A294684 Triangle begins: %e A294684 0; %e A294684 1, 5; %e A294684 2, 12, 62; %e A294684 4, 38, 350, 4154; %e A294684 6, 106, 2190, 52486, 1342206; %e A294684 12, 360, 14622, 699598, 35792566, 1908897150; %e A294684 18, 1180, 99878, 9587578, 981706830, 104715443850, 11488774559742; %e A294684 ... %e A294684 For the 2 X 2 and two colors we find %e A294684 +---+ +---+ +---+ +---+ +---+ %e A294684 |X| | | |X| |X| | |X|X| |X| | %e A294684 +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ %e A294684 | | | |X|X| | |X| | | | |X| | %e A294684 +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ %t A294684 With[{Q = 2}, Table[(Q!/n/k) Sum[Sum[EulerPhi[d] EulerPhi[f] StirlingS2[GCD[d, f] (n/d) (k/f), Q], {f, Divisors@ k}], {d, Divisors@ n}], {n, 8}, {k, n}]] // Flatten (* _Michael De Vlieger_, Nov 08 2017 *) %o A294684 (PARI) T(n,m) = {2*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), 2, 2) ))/(n*m)} \\ _Andrew Howroyd_, Oct 05 2024 %Y A294684 Main diagonal is A376822. %Y A294684 Cf. A184271, A294685, A294686, A294687, A294791, A294792, A294793, A294794. T(n,1) is A052823. %K A294684 nonn,tabl,nice %O A294684 1,3 %A A294684 _Marko Riedel_, Nov 06 2017