This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294686 #35 Oct 05 2024 16:30:53 %S A294686 0,0,6,0,260,20720,6,5112,1223136,257706024,48,81876,67769552, %T A294686 54278580036,44900438149488,260,1223396,3731753700,11681058472672, %U A294686 38403264917970196,131160169581733489616,1200,17815020,207438938000,2570217454576416,33725471278376393424,460532748521625850986660,6467585568566200114362823920,5106,257706012,11681057249536,576229125971686224 %N A294686 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry, 1 <= k <= n. %C A294686 Colors are not being permuted, i.e., Power Group Enumeration does not apply here. %D A294686 F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973. %H A294686 Andrew Howroyd, <a href="/A294686/b294686.txt">Table of n, a(n) for n = 1..820</a> (first 40 rows) %H A294686 Marko Riedel et al., <a href="https://math.stackexchange.com/questions/2506511/">Burnside lemma and translational symmetries of the torus.</a> %F A294686 T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=4 and S(n,k) Stirling numbers of the second kind. %F A294686 T(n,k) = A184277(n,k) - 4*A184284(n,k) + 6*A184271(n,k) - 4. - _Andrew Howroyd_, Oct 05 2024 %e A294686 Triangle begins: %e A294686 0; %e A294686 0, 6; %e A294686 0, 260, 20720; %e A294686 6, 5112, 1223136, 257706024; %e A294686 48, 81876, 67769552, 54278580036, 44900438149488; %e A294686 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616; %e A294686 ... %o A294686 (PARI) T(n,m)=my(k=4); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), k, 2) ))/(n*m) \\ _Andrew Howroyd_, Oct 05 2024 %Y A294686 Main diagonal is A376824. %Y A294686 Cf. A294684, A294685, A294687, A294791, A294792, A294793, A294794. T(n,1) is A056284. %Y A294686 Cf. A184271, A184284, A184277. %K A294686 nonn,tabl,nice %O A294686 1,3 %A A294686 _Marko Riedel_, Nov 06 2017