cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294692 Expansion of Product_{k>=1} 1 / (1 - x^k)^(k*(3*k + 2)).

Original entry on oeis.org

1, 5, 31, 148, 667, 2754, 10823, 40393, 145085, 502780, 1690603, 5530649, 17658430, 55141520, 168751779, 506933980, 1496999360, 4350994324, 12460305177, 35192973824, 98116587875, 270220568883, 735668636567, 1981082952258, 5279879097853, 13933764841202
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 50:
    S:= series(mul(1/(1-x^k)^(k*(3*k+2)), k=1..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Nov 07 2017
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^(k*(3*k+2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(4*Pi*n^(3/4) / (3*5^(1/4)) + 2*Zeta(3) * sqrt(5*n) / Pi^2 - 2*5^(5/4) * Zeta(3)^2 * n^(1/4) / Pi^5 + 200*Zeta(3)^3 / (3*Pi^8) - 3*Zeta(3) / (4*Pi^2) + 1/6) * Pi^(1/6) / (A^2 * 2^(3/2) * 5^(1/6) * n^(2/3)), where A is the Glaisher-Kinkelin constant A074962.