cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294704 Expansion of Product_{k>=1} (1 - k^k*x^k)^(k^k).

This page as a plain text file.
%I A294704 #18 Nov 09 2017 11:38:45
%S A294704 1,-1,-16,-713,-64711,-9688521,-2165724176,-675843638952,
%T A294704 -280752881225790,-149800127712465769,-99844730464906330029,
%U A294704 -81300082264515781043363,-79413710307214816810372248,-91652445696245266803423194130
%N A294704 Expansion of Product_{k>=1} (1 - k^k*x^k)^(k^k).
%H A294704 Seiichi Manyama, <a href="/A294704/b294704.txt">Table of n, a(n) for n = 0..214</a>
%F A294704 a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A294773(k)*a(n-k) for n > 0.
%F A294704 a(n) ~ -n^(2*n). - _Vaclav Kotesovec_, Nov 09 2017
%t A294704 nmax = 20; CoefficientList[Series[Product[(1 - k^k*x^k)^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]
%o A294704 (PARI) N=20; x='x+O('x^N); Vec(prod(k=1, N, (1-k^k*x^k)^k^k))
%Y A294704 Column k=1 of A294699.
%Y A294704 Cf. A294757, A294773.
%K A294704 sign
%O A294704 0,3
%A A294704 _Seiichi Manyama_, Nov 07 2017