A294712 Numbers that are the sum of three squares (square 0 allowed) in exactly nine ways.
425, 521, 545, 569, 614, 650, 701, 725, 729, 774, 809, 810, 845, 857, 953, 974, 989, 990, 1053, 1062, 1070, 1074, 1091, 1118, 1134, 1139, 1166, 1179, 1217, 1249, 1251, 1262, 1266, 1277, 1298, 1310, 1418, 1446, 1458, 1470, 1525, 1541, 1546, 1571, 1594, 1611
Offset: 1
Keywords
Examples
545 = 8^2 + 15^2 + 16^2 = 0^2 + 16^2 + 17^2 = 10^2 + 11^2 + 18^2 = 5^2 + 14^2 + 18^2 = 8^2 + 9^2 + 20^2 = 1^2 + 12^2 + 20^2 = 2^2 + 10^2 + 21^2 = 5^2 + 6^2 + 22^2 = 0^2 + 4^2 + 23^2. - _Robert Israel_, Nov 08 2017
Links
- Robert Price, Table of n, a(n) for n = 1..1105
Crossrefs
Programs
-
Maple
N:= 10000: # to get all terms <= N V:= Array(0..N): for i from 0 to isqrt(N) do for j from 0 to i while i^2 + j^2 <= N do for k from 0 to j while i^2 + j^2 + k^2 <= N do t:= i^2 + j^2 + k^2; V[t]:= V[t]+1; od od od: select(t -> V[t] = 9, [$1..N]); # Robert Israel, Nov 08 2017
-
Mathematica
Select[Range[0, 1000], Length[PowersRepresentations[#, 3, 2]] == 9 &]
Extensions
Updated Mathematica program to Version 11. by Robert Price, Nov 01 2019
Comments