A294717 Numbers k such that 2^((k-1)/3) == 1 (mod k) and (2*k-1)*(2^((k-1)/6)) == 1 (mod k).
1, 43, 109, 157, 229, 277, 283, 307, 397, 499, 643, 691, 733, 739, 811, 997, 1021, 1051, 1069, 1093, 1459, 1579, 1597, 1627, 1699, 1723, 1789, 1933, 2179, 2203, 2251, 2341, 2347, 2731, 2749, 2917, 2971, 3061, 3163, 3181, 3229, 3259, 3277, 3331, 3373, 3541, 4027
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv:1608.00862 [math.GM], 2016.
Programs
-
Mathematica
Select[Range[1, 6001, 6], # == 1 || PowerMod[2, (#-1)/3, #] == 1 && Mod[-PowerMod[2, (#-1)/6, #], #] == 1&] (* Jean-François Alcover, Nov 18 2018 *)
-
PARI
is(n)=n%6==1 && Mod(2,n)^(n\3)==1 && (2*n-1)*Mod(2,n)^(n\6)==1 \\ Charles R Greathouse IV, Nov 08 2017
Comments