This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294723 #86 Dec 31 2020 11:11:15 %S A294723 1,4,7,11,16,20,27,31,38,45,53,57,66,70,78,89,100,104,115,119,130,142, %T A294723 150,154,167,176,184,196,211,215,230,234,249,261,269,280,297,301,309, %U A294723 321,338,342,359,363,379,398,406,410,429,440,459,471,487,491,510 %N A294723 a(n) is the total number of vertices after n-th stage in the diagram of the symmetries of sigma described in A236104, with a(0) = 1. %C A294723 a(n) is also the total number of "hinges" in the "mechanism" where every row of the two-dimensional diagram of the isosceles triangle with n rows described in A237593 is folded in a 90-degree zig-zag, appearing the structure of the stepped pyramid with n levels described in A245092. Note that the diagram described in A236104 is also the top view of the mentioned pyramid. The area of the terraces in the n-th level of the pyramid, starting from the top, equals sigma(n) = A000203(n). %C A294723 For the construction of the two-dimensional diagram using Dyck paths and for more information about the pyramid see A237593 and A262626. %C A294723 Note that every line segment of the Dyck paths of the diagram is related to partitions into consecutive parts (see A237591). - _Omar E. Pol_, Feb 23 2018 %H A294723 Robert Price, <a href="/A294723/b294723.txt">Table of n, a(n) for n = 0..5000</a> %H A294723 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr01.jpg">An infinite stepped pyramid</a> %H A294723 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr02.jpg">Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)</a> %H A294723 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the stepped pyramid (first 16 levels)</a> %F A294723 a(n) = A317109(n) - A237590(n) + 1 (Euler's formula). - _Omar E. Pol_, Jul 21 2018 %e A294723 Illustration of initial terms (n = 0..9): %e A294723 . _ _ _ _ %e A294723 . _ _ _ |_ _ _ |_ %e A294723 . _ _ _ |_ _ _| |_ _ _| |_ %e A294723 . _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ | %e A294723 . _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | | %e A294723 . _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | | %e A294723 . . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| %e A294723 . %e A294723 . 1 4 7 11 16 20 27 %e A294723 . %e A294723 . %e A294723 . _ _ _ _ _ %e A294723 . _ _ _ _ _ |_ _ _ _ _| %e A294723 . _ _ _ _ |_ _ _ _ | |_ _ _ _ |_ _ %e A294723 . |_ _ _ _| |_ _ _ _| |_ |_ _ _ _| |_ | %e A294723 . |_ _ _ |_ |_ _ _ |_ |_ _ |_ _ _ |_ |_|_ _ %e A294723 . |_ _ _| |_ _ |_ _ _| |_ _ | |_ _ _| |_ _ | | %e A294723 . |_ _ |_ _ | | |_ _ |_ _ | | | |_ _ |_ _ | | | | %e A294723 . |_ _|_ | | | | |_ _|_ | | | | | |_ _|_ | | | | | | %e A294723 . |_ | | | | | | |_ | | | | | | | |_ | | | | | | | | %e A294723 . |_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_| %e A294723 . %e A294723 . 31 38 45 %e A294723 . %e A294723 . %e A294723 Illustration of the diagram after 29 stages (contain 215 vertices, 268 edges and 54 regions or parts): %e A294723 ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _ _ | | %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _ %e A294723 |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ | %e A294723 |_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_ %e A294723 |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_ %e A294723 |_ _ _ _ _ _ _ _ _ _ | | |_ _| |_ %e A294723 |_ _ _ _ _ _ _ _ _ _| | |_ _ |_ |_ _ |_ _ %e A294723 |_ _ _ _ _ _ _ _ _ | |_ _ _| |_ | |_ _ | %e A294723 |_ _ _ _ _ _ _ _ _| | |_ _ |_ |_|_ _ | | %e A294723 |_ _ _ _ _ _ _ _ | |_ _ |_ _|_ | | | |_ _ _ _ _ _ %e A294723 |_ _ _ _ _ _ _ _| | | | |_ _ | |_|_ _ _ _ _ | | %e A294723 |_ _ _ _ _ _ _ | |_ _ |_ |_ | | |_ _ _ _ _ | | | | %e A294723 |_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | | %e A294723 |_ _ _ _ _ _ | |_ |_ |_ | |_|_ _ _ _ | | | | | | | | %e A294723 |_ _ _ _ _ _| |_ _| |_ | |_ _ _ _ | | | | | | | | | | %e A294723 |_ _ _ _ _ | |_ _ | |_ _ _ _ | | | | | | | | | | | | %e A294723 |_ _ _ _ _| |_ | |_|_ _ _ | | | | | | | | | | | | | | %e A294723 |_ _ _ _ |_ _|_ |_ _ _ | | | | | | | | | | | | | | | | %e A294723 |_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | | %e A294723 |_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | | %e A294723 |_ _ _| |_ _ | | | | | | | | | | | | | | | | | | | | | | %e A294723 |_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | | %e A294723 |_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | | %e A294723 |_ | | | | | | | | | | | | | | | | | | | | | | | | | | | | %e A294723 |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| %e A294723 . %Y A294723 Cf. A317109 (number of edges). %Y A294723 Cf. A237590 (number of regions or parts). %Y A294723 Compare with A317293 (analog for the diagram that contains subparts). %Y A294723 Cf. A000203, A024916, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A245092, A262626, A294847, A296508. %K A294723 nonn %O A294723 0,2 %A A294723 _Omar E. Pol_, Nov 07 2017 %E A294723 Terms a(30) and beyond from _Robert Price_, Jul 31 2018 %E A294723 Example extended for a(7)-a(9) and a(29) by _Omar E. Pol_, Jul 31 2018