cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294733 Maximal diameter of connected (2*k)-regular graphs on 2*n+1 nodes written as triangular array T(n,k), 1 <= k <= n.

This page as a plain text file.
%I A294733 #24 Dec 16 2017 05:29:10
%S A294733 1,2,1,3,2,1,4,2,2,1,5,4,2,2,1,6,5,2,2,2,1,7,6,4,2,2,2,1,8
%N A294733 Maximal diameter of connected (2*k)-regular graphs on 2*n+1 nodes written as triangular array T(n,k), 1 <= k <= n.
%C A294733 The results were found by applying the Floyd-Warshall algorithm to the output of Markus Meringer's GenReg program.
%H A294733 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Regular Graphs.</a>
%H A294733 M. Meringer, <a href="https://sourceforge.net/projects/genreg/">GenReg</a>, Generation of regular graphs.
%H A294733 StackOverflow, <a href="https://stackoverflow.com/questions/15646307/algorithm-for-diameter-of-graph">Algorithm for diameter of graph?</a>.
%H A294733 Wikipedia, <a href="https://en.wikipedia.org/wiki/Distance_(graph_theory)">Distance (graph theory).</a>
%H A294733 Wikipedia, <a href="https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm">Floyd-Warshall algorithm.</a>
%e A294733 Table starts:
%e A294733 Degree= 2   4   6   8  10  12  14  16
%e A294733 n= 3  : 1
%e A294733 n= 5  : 2   1
%e A294733 n= 7  : 3   2   1
%e A294733 n= 9  : 4   2   2   1
%e A294733 n=11  : 5   4   2   2   1
%e A294733 n=13  : 6   5   2   2   2   1
%e A294733 n=15  : 7   6   4   2   2   2   1
%e A294733 n=17  : 8 >=7 >=4   2   2   2   2   1
%Y A294733 Cf. A068934, A294732, A296524, A296525, A296526.
%K A294733 nonn,tabl,hard,more
%O A294733 1,2
%A A294733 _Hugo Pfoertner_, Dec 14 2017