A294750 Expansion of Product_{k>=1} 1/(1 - x^(2*k - 1))^(k^2).
1, 1, 1, 5, 5, 14, 24, 40, 76, 121, 230, 356, 635, 1024, 1709, 2820, 4510, 7430, 11712, 19007, 29800, 47490, 74261, 116385, 181423, 280696, 434956, 666970, 1025816, 1562504, 2383916, 3611493, 5467505, 8241296, 12389888, 18581326, 27765501, 41426994, 61573390
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ exp(2*Pi/3 * (2/15)^(1/4) * n^(3/4) + Zeta(3) * sqrt(15*n/2) / Pi^2 + (Pi * (15/2)^(1/4)/24 - Zeta(3)^2 * (15/2)^(5/4) / Pi^5) * n^(1/4) + 75*Zeta(3)^3 / Pi^8 - Zeta(3) / (8*Pi^2) - 1/24) * sqrt(A) / (2^(197/96) * 15^(11/96) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.
Comments