This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294751 #17 May 20 2019 02:44:35 %S A294751 2145,4641,4845,5005,9177,11305,13485,13585,17017,21489,21505,23529, %T A294751 26445,31465,31857,33649,35409,35581,36685,42441,43401,46189,46345, %U A294751 49569,50065,53985,60697,61705,63085,63597,65569,67821,69745,77745,80845,83049,87505,88881 %N A294751 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 4. %H A294751 Robert Israel, <a href="/A294751/b294751.txt">Table of n, a(n) for n = 1..10000</a> %e A294751 2145 = 3*5*11*13. Prime factors average is (3 + 5 + 11 + 13)/4 = 8 and 3 + 5 = 8 = 13 - 5, 5 + 3 = 8 = 11 - 3. %p A294751 with(numtheory): P:=proc(q,h) local a,b,k,n,ok; %p A294751 for n from 2*3*5*7 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2]; %p A294751 if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1; %p A294751 for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,4); %p A294751 # Alternative: %p A294751 N:= 10^5: # to get terms <= N %p A294751 M:= floor(max(fsolve(3*5*(M-5)*(M-3) = N))): %p A294751 P:= select(isprime, [seq(i,i=3..M/2,2)]): nP:= nops(P): %p A294751 Res:= NULL: %p A294751 for m from 10 by 2 to M do %p A294751 for ix from 1 to nP-2 do %p A294751 x:= P[ix]; %p A294751 if x >= m/2 or (x*(m-x))^2 >= N then break fi; %p A294751 if not isprime(m-x) then next fi; %p A294751 for iy from ix+1 to nP-1 do %p A294751 y:= P[iy]; %p A294751 if y >= m/2 or x*(m-x)*y*(m-y) >= N then break fi; %p A294751 if not isprime(m-y) then next fi; %p A294751 Res:= Res, x*(m-x)*y*(m-y); %p A294751 od od od: %p A294751 sort([Res]); # _Robert Israel_, May 19 2019 %o A294751 (PARI) isok(n, nb=4) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ _Michel Marcus_, Nov 10 2017 %Y A294751 Subsequence of A046386. %Y A294751 Cf. A006881 (k=2), A262723 (k=3), A294752 (k=5), A294776 (k=6). %K A294751 nonn %O A294751 1,1 %A A294751 _Paolo P. Lava_, Nov 08 2017 %E A294751 More terms from _Giovanni Resta_, Nov 09 2017