This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A294752 #22 Nov 10 2017 21:47:10 %S A294752 53295,119301,229245,399993,608235,623645,1462731,2324495,3696189, %T A294752 3973145,4482879,5356445,5920971,6249633,7588977,8270385,10160943, %U A294752 10450121,10505373,13185969,13630011,13760929,14935029,19095395,20280795,22566271,23131549,23408259,24778401 %N A294752 Squarefree products of k primes that are symmetrically distributed around their average. Case k = 5. %H A294752 Robert Israel, <a href="/A294752/b294752.txt">Table of n, a(n) for n = 1..3560</a> %e A294752 53295 = 3*5*11*17*19. Prime factors average is (3 + 5 + 11 + 17 + 19)/5 = 11 and 3 + 8 = 11 = 19 - 8, 5 + 6 = 11 = 17 - 6. %p A294752 with(numtheory): P:=proc(q,h) local a,b,k,n,ok; %p A294752 for n from 2*3*5*7*11 to q do if not isprime(n) and issqrfree(n) then a:=ifactors(n)[2]; %p A294752 if nops(a)=h then b:=2*add(a[k][1],k=1..nops(a))/nops(a); ok:=1; %p A294752 for k from 1 to trunc(nops(a)/2) do if a[k][1]+a[nops(a)-k+1][1]<>b then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; fi; od; end: P(10^9,5); %p A294752 # Alternative: %p A294752 N:= 10^8: # to get all terms <= N %p A294752 M:= floor((8*N/15)^(1/3)): %p A294752 P:= select(isprime, [seq(i,i=3..M,2)]): nP:= nops(P): %p A294752 Res:= NULL: %p A294752 for i3 from 3 to nP-2 do %p A294752 p3:= P[i3]; %p A294752 for i1 from 1 to i3-2 do %p A294752 if isprime(2*p3 - P[i1]) then %p A294752 for i2 from i1+1 to i3-1 do %p A294752 if isprime(2*p3 - P[i2]) then %p A294752 v:=P[i1]*P[i2]*p3*(2*p3-P[i2])*(2*p3-P[i1]); %p A294752 if v <= N then Res:= Res, v fi %p A294752 fi %p A294752 od %p A294752 fi %p A294752 od %p A294752 od: %p A294752 sort([Res]): # _Robert Israel_, Nov 10 2017 %o A294752 (PARI) isok(n, nb=5) = {if (issquarefree(n) && (omega(n)==nb), f = factor(n)[, 1]~; avg = vecsum(f)/#f; for (k=1, #f\2, if (f[k] + f[#f-k+1] != 2*avg, return(0));); return (1););} \\ _Michel Marcus_, Nov 10 2017 %Y A294752 Subsequence of A046387, A203614. %Y A294752 Cf. A006881 (k=2), A262723 (k=3), A294751 (k=4), A294776 (k=6). %K A294752 nonn %O A294752 1,1 %A A294752 _Paolo P. Lava_, Nov 08 2017 %E A294752 More terms from _Giovanni Resta_, Nov 09 2017 %E A294752 Missing term 23131549 inserted by _Robert Israel_, Nov 10 2017