cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A294749 Expansion of Product_{k>=1} (1 + x^(2*k - 1))^(k^2).

Original entry on oeis.org

1, 1, 0, 4, 4, 9, 15, 22, 52, 65, 129, 190, 335, 534, 814, 1399, 2074, 3462, 5135, 8303, 12658, 19562, 30182, 45542, 70620, 105034, 161223, 239532, 362929, 539252, 805320, 1197589, 1769483, 2624604, 3847755, 5681787, 8291848, 12165978, 17696362, 25796820
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Comments

In general, if g.f. = Product_{k>=1} (1 + x^(2*k-1))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi*sqrt(2)/3 * (7*c2/15)^(1/4) * n^(3/4) + 3*(c1+c2) * Zeta(3) / (2*Pi^2) * sqrt(15*n/(7*c2)) + (Pi*(4*c0 + 2*c1 + c2) * (15/(7*c2))^(1/4) / (24*sqrt(2)) - 9*(c1+c2)^2 * Zeta(3)^2 * (15/(7*c2))^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*(c1+c2)^3 * Zeta(3)^3 / (49 * c2^2 * Pi^8) - 15*(c1+c2) * (4*c0 + 2*c1 + c2) * Zeta(3) / (112 * c2 * Pi^2)) * (7/15)^(1/8) * 2^((c1+c2)/24 - 9/4) * c2^(1/8) / n^(5/8).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k-1))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi/3 * (7/15)^(1/4) * sqrt(2) * n^(3/4) + 3*Zeta(3) * sqrt(15*n/7) / (2*Pi^2) + (Pi * (15/7)^(1/4) / (24*sqrt(2)) - 9*Zeta(3)^2 * (15/7)^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*Zeta(3)^3 / (49*Pi^8) - 15*Zeta(3) / (112*Pi^2)) * (7/15)^(1/8) / (2^(53/24) * n^(5/8)).

A294750 Expansion of Product_{k>=1} 1/(1 - x^(2*k - 1))^(k^2).

Original entry on oeis.org

1, 1, 1, 5, 5, 14, 24, 40, 76, 121, 230, 356, 635, 1024, 1709, 2820, 4510, 7430, 11712, 19007, 29800, 47490, 74261, 116385, 181423, 280696, 434956, 666970, 1025816, 1562504, 2383916, 3611493, 5467505, 8241296, 12389888, 18581326, 27765501, 41426994, 61573390
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1 - x^(2*k-1))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(2*Pi/3 * (2*c2/15)^(1/4) * n^(3/4) + (c1+c2) * Zeta(3) / Pi^2 * sqrt(15*n/(2*c2)) + (Pi*(4*c0 + 2*c1 + c2)/24 - 15*(c1+c2)^2 * Zeta(3)^2 / (2*c2*Pi^5)) * (15*n/(2*c2))^(1/4) + 75*(c1+c2)^3 * Zeta(3)^3 / (c2^2 * Pi^8) - (5*c0 + 15*c1/4 + c2/2 + 5*c1*(2*c0 + c1) / (2*c2)) * (Zeta(3) / (4*Pi^2)) - (c1+c2)/24) * A^((c1+c2)/2) * (15/c2)^((c1+c2)/96 - 1/8) * n^((c1+c2)/96 - 5/8) / (2^(15/8 + c0/2 + (29*c1 + 17*c2)/96) * Pi^((c1+c2)/24)), where A is the Glaisher-Kinkelin constant A074962.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(2*k-1))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi/3 * (2/15)^(1/4) * n^(3/4) + Zeta(3) * sqrt(15*n/2) / Pi^2 + (Pi * (15/2)^(1/4)/24 - Zeta(3)^2 * (15/2)^(5/4) / Pi^5) * n^(1/4) + 75*Zeta(3)^3 / Pi^8 - Zeta(3) / (8*Pi^2) - 1/24) * sqrt(A) / (2^(197/96) * 15^(11/96) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.

A294779 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k-1)))^(k*(k-1)/2).

Original entry on oeis.org

1, 0, 0, 2, 0, 6, 2, 12, 12, 22, 42, 42, 114, 102, 264, 280, 564, 744, 1186, 1866, 2538, 4380, 5598, 9732, 12602, 20898, 28374, 44048, 63000, 92190, 137012, 192864, 291588, 403668, 609072, 843228, 1253978, 1752150, 2555058, 3611380, 5168778, 7371324, 10400908
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Comments

Convolution of A294777 and A294778.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(2*k-1))/(1-x^(2*k-1)))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi * 2^(1/4) * n^(3/4)/3 - Pi*n^(1/4) / 2^(17/4) + 3*Zeta(3) / (32*Pi^2)) / (2^(37/16) * n^(5/8)).
Showing 1-3 of 3 results.